Prof. Dr. Alfred Toth

Funktionen in der polykontexturalen Semiotik

\[(x.1): \quad Z = f(\Omega)\]
\[(x.2): \quad Z = f(\omega, t)\]
\[(x.3): \quad Z \neq f(\Omega)\]

mit \(x \in (1, 2)\) definieren, was jedoch für die dritte Trichotomie nicht möglich ist, da der Zusammenhang von Zeichen keine Funktion des Objektes, sondern eine solche einer Menge von Zeichen ist

\(Z = f((Z))\).

Für den Trivialfall, daß die Menge aus dem Zeichen selbst besteht, gilt dann natürlich

\(Z = f(Z)\).

Es genügt also völlig, von der semiotischen \(2 \times 3\)-Teilmatrix auszugehen und jedes Subzeichen der Form

\(S = (x.y)\)

mit \(x \in (1, 2)\) und \(y \in (1, 2, 3)\)
durch
(x.1) = f(Ω)
(x.2) = f(ω, t)
(x.3) ≠ f(Ω)
zu definieren. Ein offener Konnex kann dann definiert werden durch
(x.y),
ein abgeschlossener Konnex durch
(x.y] oder [x.y)
und ein vollständiger Konnex durch
[x.y].

\[Z^{3,3} = (M \rightarrow ((M \rightarrow O) \rightarrow (M \rightarrow O \rightarrow I))) , \]

d.h. jede Teilrelation der Stufe \(n = 1 \) ist in den Teilrelationen der Stufen \(n > 1 \) eingebettet.

Gehen wir also aus von

\[Z^{2,3} = (((w.x), (y.z)) \]

und setzen \((w.x) = A \) und \((y.z) = B\),
dann können wir auch die dyadisch-trichotomische Zeichenrelation als Relation über Relationen darstellen, und zwar auf 6-fache Weise

\[
\begin{align*}
Z^{2,3} &= (A, B) = ((w.x), (y.z)) \quad \text{keine Einbettung} \\
Z^{2,3} &= ((A), B) = (((w.x)), (y.z)) \quad \text{nur A links eingebettet} \\
Z^{2,3} &= ((B), A) = (((y.z)), (w.x)) \quad \text{nur B links eingebettet} \\
Z^{2,3} &= (B, (A)) = ((y.z), ((w.x))) \quad \text{nur A rechts eingebettet} \\
Z^{2,3} &= (A, (B)) = ((w.x), ((y.z))) \quad \text{nur B rechts eingebettet}
\end{align*}
\]
\[Z^{2,3} = ((A, B)) = (((w.x), (y.z))) \] A und B eingebettet

Damit haben wir außerdem eine Isomorphie zwischen der in Toth (2015) ebenfalls auf 6-fache Weise darstellbaren Logik \(L^* \) und \(Z^{2,3} \) gefunden. Will man nämlich die Reflexionsidentität der klassischen 2-wertigen aristotelischen Logik

\[L = (0, 1) \]

aufheben, ohne das Gesetz des Tertium non datur zu verletzen, so kann man dies durch Einführung eines Einbettungsoperators \(E \) mit

\[E: x \rightarrow (x) \]

tun. Dadurch erhält man folgende Abbildung

\[L \rightarrow L^* = ((0, 1), ((0), 1), ((1), 0), (0, (1)), (1, (0)), ((0, 1))), \]

und damit

\[Z^{2,3} \cong L^*. \]

Die 36 möglichen dyadisch-trichotomischen semiotischen Relationen

\[
\begin{align*}
(1.1, 2.1) & \quad (1.1, 2.1) & \quad [1.1, 2.1] & \quad [1.1, 2.1] \\
(1.1, 2.2) & \quad (1.1, 2.2) & \quad [1.1, 2.2] & \quad [1.1, 2.2] \\
(1.1, 2.3) & \quad (1.1, 2.3) & \quad [1.1, 2.3] & \quad [1.1, 2.3] \\
(1.2, 2.1) & \quad (1.2, 2.1) & \quad [1.2, 2.1] & \quad [1.2, 2.1] \\
(1.2, 2.2) & \quad (1.2, 2.2) & \quad [1.2, 2.2] & \quad [1.2, 2.2] \\
(1.2, 2.3) & \quad (1.2, 2.3) & \quad [1.2, 2.3] & \quad [1.2, 2.3] \\
(1.3, 2.1) & \quad (1.3, 2.1) & \quad [1.3, 2.1] & \quad [1.3, 2.1] \\
(1.3, 2.2) & \quad (1.3, 2.2) & \quad [1.3, 2.2] & \quad [1.3, 2.2] \\
(1.3, 2.3) & \quad (1.3, 2.3) & \quad [1.3, 2.3] & \quad [1.3, 2.3]
\end{align*}
\]

müssen somit je 6-fach ausdifferenziert werden. Dadurch erhält man also 6 mal 36 = 216 durch \(E \) differenzierbare topologische semiotische Relationen

\[
\begin{align*}
(1.1, 2.1) & \quad ((1.1), 2.1) & \quad (1.1, (2.1)) & \quad ((2.1), 1.1) & \quad (2.1, (1.1)) & \quad ((2.1, 1.1)) \\
(1.1, 2.1) & \quad ((1.1), 2.1) & \quad (1.1, (2.1)) & \quad ((2.1), 1.1) & \quad (2.1, (1.1)) & \quad ((1.1, 2.1))
\end{align*}
\]
[1.1, 2.1]	[1.1, (2.1)]	[1.1, 2.1)	(2.1, 1.1)	[2.1, (1.1)]	[(1.1, 2.1)]
[1.1, 2.1]	[1.1, (2.1)]	[1.1, 2.1)	(2.1, 1.1)	[2.1, (1.1)]	[(1.1, 2.1)]
(1.1, 2.2)	(1.1, 2.2)	(1.1, (2.1))	(2.2, 1.1)	(2.2, 1.1)	(1.1, 2.2)
(1.1, 2.2)	(1.1, 2.2)	(1.1, (2.1))	(2.2, 1.1)	(2.2, 1.1)	(1.1, 2.2)
(1.1, 2.2)	(1.1, 2.2)	(1.1, (2.1))	(2.2, 1.1)	(2.2, 1.1)	(1.1, 2.2)
(1.1, 2.2)	(1.1, 2.2)	(1.1, (2.1))	(2.2, 1.1)	(2.2, 1.1)	(1.1, 2.2)
(1.1, 2.2)	(1.1, 2.2)	(1.1, (2.1))	(2.2, 1.1)	(2.2, 1.1)	(1.1, 2.2)
(1.1, 2.2)	(1.1, 2.2)	(1.1, (2.1))	(2.2, 1.1)	(2.2, 1.1)	(1.1, 2.2)
(1.2, 2.1)	(1.2, 2.1)	(1.2, (2.1))	(2.1, 1.2)	(2.1, 1.2)	(1.2, 2.1)
(1.2, 2.1)	(1.2, 2.1)	(1.2, (2.1))	(2.1, 1.2)	(2.1, 1.2)	(1.2, 2.1)
(1.2, 2.1)	(1.2, 2.1)	(1.2, (2.1))	(2.1, 1.2)	(2.1, 1.2)	(1.2, 2.1)
(1.2, 2.1)	(1.2, 2.1)	(1.2, (2.1))	(2.1, 1.2)	(2.1, 1.2)	(1.2, 2.1)
(1.2, 2.2)	(1.2, 2.2)	(1.2, (2.2))	(2.2, 1.2)	(2.2, 1.2)	(1.2, 2.2)
(1.2, 2.2)	(1.2, 2.2)	(1.2, (2.2))	(2.2, 1.2)	(2.2, 1.2)	(1.2, 2.2)
(1.2, 2.2)	(1.2, 2.2)	(1.2, (2.2))	(2.2, 1.2)	(2.2, 1.2)	(1.2, 2.2)
(1.2, 2.2)	(1.2, 2.2)	(1.2, (2.2))	(2.2, 1.2)	(2.2, 1.2)	(1.2, 2.2)
(1.2, 2.2)	(1.2, 2.2)	(1.2, (2.2))	(2.2, 1.2)	(2.2, 1.2)	(1.2, 2.2)
(1.2, 2.2)	(1.2, 2.2)	(1.2, (2.2))	(2.2, 1.2)	(2.2, 1.2)	(1.2, 2.2)
(1.2, 2.3)	(1.2, 2.3)	(1.2, (2.3))	(2.3, 1.2)	(2.3, 1.2)	(1.2, 2.3)
(1.2, 2.3)	(1.2, 2.3)	(1.2, (2.3))	(2.3, 1.2)	(2.3, 1.2)	(1.2, 2.3)
(1.2, 2.3)	(1.2, 2.3)	(1.2, (2.3))	(2.3, 1.2)	(2.3, 1.2)	(1.2, 2.3)
(1.2, 2.3)	(1.2, 2.3)	(1.2, (2.3))	(2.3, 1.2)	(2.3, 1.2)	(1.2, 2.3)
(1.3, 2.1)	(1.3, 2.1)	(1.3, (2.1))	(2.1, 1.3)	(2.1, 1.3)	(1.3, 2.1)
(1.3, 2.1)	(1.3, 2.1)	(1.3, (2.1))	(2.1, 1.3)	(2.1, 1.3)	(1.3, 2.1)
(1.3, 2.1)	(1.3, 2.1)	(1.3, (2.1))	(2.1, 1.3)	(2.1, 1.3)	(1.3, 2.1)
(1.3, 2.1)	(1.3, 2.1)	(1.3, (2.1))	(2.1, 1.3)	(2.1, 1.3)	(1.3, 2.1)
Ferner enthält die bensesche 3×3-Matrix bekanntlich in den Zeilen die Triaden und in den Spalten die Trichotomien.

\[
\begin{array}{ccc}
1.1 & 1.2 & 1.3 \\
2.1 & 2.2 & 2.3 \\
3.1 & 3.2 & 3.3 \\
\end{array}
\]

Da es sich hier um eine quadratische Matrix handelt, ist natürlich $n = m$.

Dagegen ist die in Toth (2019b) eingeführte dyadisch-trichotomische Matrix eine 2×3-Matrix, bei der also $n \neq m$ gilt.

\[
\begin{array}{ccc}
1.1 & 1.2 & 1.3 \\
2.1 & 2.2 & 2.3 \\
\end{array}
\]

Während also die bensesche Zeichenrelation durch

\[Z^{3,3} = (3.x, 2.y, 1.z)\]

mit $x, y, z \in (1, 2, 3)$ definiert ist, ist unsere Zeichenrelation durch

\[Z^{2,3} = ((w.x), (y.z))\]

mit $w, y \in (1, 2)$, aber $x, z \in (1, 2, 3)$ definiert.
3. Wie in Toth (2019c) gezeigt wurde, kann man die Subzeichen der 2×3-Matrix in einer Pseudo-Proto-Darstellung wie folgt anordnen

![Diagram](image)

Dagegen ist die echte Proto- und die ihr gleiche Deutero-Darstellung für die Kontexturen $K = 1$ bis $K = 3$

![Diagram](image)

(1.1) \leftrightarrow 0
(1.2) \leftrightarrow 00
(1.3) \leftrightarrow 01
(2.1) \leftrightarrow 000
(2.2) \leftrightarrow 001
(2.3) \leftrightarrow 012.

Im folgenden zeigen wir sämtliche bis zur Deuteroebene unterscheidbaren polykontexturalen Funktionen und ihre semiotischen Entsprechungen auf.

4.1. Qualitative Funktion mit \(y = 0 \)

\[
\begin{align*}
\mu_1 : 0 &= f(0) \quad \rightarrow \quad (1.1) = f(1.1) \\
\mu_2 : 0 &= f(00) \quad \rightarrow \quad (1.1) = f(1.2) \\
\mu_3 : 0 &= f(01) \quad \rightarrow \quad (1.1) = f(1.3) \\
\mu_4 : 0 &= f(000) \quad \rightarrow \quad (1.1) = f(2.1) \\
\mu_5 : 0 &= f(0001) \quad \rightarrow \quad (1.1) = f(2.2) \\
\mu_6 : 0 &= f(012) \quad \rightarrow \quad (1.1) = f(2.3) \\
\end{align*}
\]

4.2. Qualitative Funktion mit \(y = 00 \)

\[
\begin{align*}
\mu_7 : 00 &= f(0) \quad \rightarrow \quad (1.2) = f(1.1) \\
\mu_8 : 00 &= f(00) \quad \rightarrow \quad (1.2) = f(1.2) \\
\mu_9 : 00 &= f(01) \quad \rightarrow \quad (1.2) = f(1.3) \\
\mu_{10} : 00 &= f(000) \quad \rightarrow \quad (1.2) = f(2.1) \\
\mu_{11} : 00 &= f(0001) \quad \rightarrow \quad (1.2) = f(2.2) \\
\mu_{12} : 00 &= f(012) \quad \rightarrow \quad (1.2) = f(2.3) \\
\end{align*}
\]

4.3. Qualitative Funktion mit \(y = 01 \)

\[
\begin{align*}
\mu_13 : 01 &= f(0) \quad \rightarrow \quad (1.3) = f(1.1) \\
\mu_14 : 01 &= f(00) \quad \rightarrow \quad (1.3) = f(1.2) \\
\mu_15 : 01 &= f(01) \quad \rightarrow \quad (1.3) = f(1.3) \\
\end{align*}
\]
μ_{16}: 01 = f(000) → (1.3) = f(2.1)
μ_{17}: 01 = f(0001) → (1.3) = f(2.2)
μ_{18}: 01 = f(012) → (1.3) = f(2.3)

4.4. Qualitative Funktion mit y = 000
μ_{19}: 000 = f(0) → (2.1) = f(1.1)
μ_{20}: 000 = f(00) → (2.1) = f(1.2)
μ_{21}: 000 = f(01) → (2.1) = f(1.3)
μ_{22}: 000 = f(000) → (2.1) = f(2.1)
μ_{23}: 000 = f(0001) → (2.1) = f(2.2)
μ_{24}: 000 = f(012) → (2.1) = f(2.3)

4.5. Qualitative Funktion mit y = 001
M_{25}: 001 = f(0) → (2.2) = f(1.1)
M_{26}: 001 = f(00) → (2.2) = f(1.2)
M_{27}: 001 = f(01) → (2.2) = f(1.3)
M_{28}: 001 = f(000) → (2.2) = f(2.1)
M_{29}: 001 = f(0001) → (2.2) = f(2.2)
M_{30}: 001 = f(012) → (2.2) = f(2.3)

4.6. Qualitative Funktion mit y = 012
μ_{31}: 012 = f(0) → (2.3) = f(1.1)
μ_{32}: 012 = f(00) → (2.3) = f(1.2)
μ_{33}: 012 = f(01) → (2.3) = f(1.3)
μ_{34}: 012 = f(000) → (2.3) = f(2.1)
μ_{35}: 012 = f(0001) → (2.3) = f(2.2)
μ_{36}: 012 = f(012) → (2.3) = f(2.3)
Literatur

Bense, Max, Semiotische Prozesse und Systeme. Baden-Baden 1975
Bense, Max, Die Unwahrscheinlichkeit des Ästhetischen. Baden-Baden 1979
Kronthaler, Engelbert, Grundlegung einer Mathematik der Qualitäten. Frankfurt am Main 1986
Toth, Alfred, Die Hochzeit von Semiotik und Struktur. Klagenfurt 2003
Toth, Alfred, Einbettungsrelationen topologischer semiotischer Relationen. In: Electronic Journal for Mathematical Semiotics, 2019a
Toth, Alfred, Kontexturen statt Trichotomien. In: Electronic Journal for Mathematical Semiotics, 2019c
Walther, Elisabeth, Allgemeine Zeichenlehre. 2. Aufl. Stuttgart 1979

20.5.2019