Isomorphe und homomorphe semiotische Grenzen und Ränder

1. Im Anschluß an die drei Vorgängerstudien zur topologischen Semiotik und ihrer zentralen Begriffe der semiotischen Nachbarschaft, linker (involvativer) und rechter (suppletiver) Ränder, von Grenzen und sog. Grenzrändern (vgl. Toth 2013a, b) soll im folgenden eine Darstellungsweise geboten werden, die es ermöglicht, für jedes Paar aus den 10 Peirce-Benseschen Zeichenklassen aufgrund der Nachbarschaften für $\Delta_{i,j} = \{1, 2, 3\}$ die isomorphen sowie homomorphen Grenzen, Ränder und Grenzränder auf einfache Weise festzustellen. Dieser "Service-Artikel" dient natürlich dazu, einerseits die bereits in den Vorgängerstudien formulierten und vorerst noch unbewiesenen Sätze der topologischen und algebraischen Semiotik ihren Beweisen entgegenzuführen und andererseits die Aufdeckung weiterer Sätze und Lemmata zu ermöglichen.

2.1. $\Delta_{i,j} = 1$

2.1.1.

$G((3.1, 2.1, 1.1), (3.1, 2.1, 1.2)) = (1.1, 1.2)$

$\mathcal{R}_\lambda(3.1, 2.1, 1.1) = \emptyset$

$\mathcal{R}_\rho(3.1, 2.1, 1.1) = \{(3.2), (3.3), (2.2), (2.3), (1.2), (1.3)\}$

$\mathcal{R}_\lambda(3.1, 2.1, 1.2) = (1.1)$

$\mathcal{R}_\rho(3.1, 2.1, 1.2) = \{(3.2), (3.3), (2.2), (2.3), (1.3)\}$

Grenzränder

$G((3.1, 2.1, 1.1), (3.1, 2.1, 1.2)) \cap \mathcal{R}_\lambda(3.1, 2.1, 1.1) = \emptyset$

$G((3.1, 2.1, 1.1), (3.1, 2.1, 1.2)) \cap \mathcal{R}_\rho(3.1, 2.1, 1.1) = (1.2)$

$G((3.1, 2.1, 1.1), (3.1, 2.1, 1.2)) \cap \mathcal{R}_\lambda(3.1, 2.1, 1.2) = (1.1)$

$G((3.1, 2.1, 1.1), (3.1, 2.1, 1.2)) \cap \mathcal{R}_\rho(3.1, 2.1, 1.2) = \emptyset$.

2.1.2.
\[G((3.1, 2.1, 1.2), (3.1, 2.1, 1.3)) = (1.2, 1.3) \]
\[\mathcal{R}_\lambda(3.1, 2.1, 1.2) = (1.1) \]
\[\mathcal{R}_\rho(3.1, 2.1, 1.2) = \{(3.2), (3.3), (2.2), (2.3), (1.3)\} \]
\[\mathcal{R}_\lambda(3.1, 2.1, 1.3) = \{(1.1), (1.2)\} \]
\[\mathcal{R}_\rho(3.1, 2.1, 1.3) = \{(3.2), (3.3), (2.2), (2.3)\} \]

Grenzräder
\[G((3.1, 2.1, 1.2), (3.1, 2.1, 1.3)) \cap \mathcal{R}_\lambda(3.1, 2.1, 1.2) = \emptyset \]
\[G((3.1, 2.1, 1.2), (3.1, 2.1, 1.3)) \cap \mathcal{R}_\rho(3.1, 2.1, 1.2) = (1.3) \]
\[G((3.1, 2.1, 1.2), (3.1, 2.1, 1.3)) \cap \mathcal{R}_\lambda(3.1, 2.1, 1.3) = (1.2) \]
\[G((3.1, 2.1, 1.2), (3.1, 2.1, 1.3)) \cap \mathcal{R}_\rho(3.1, 2.1, 1.3) = \emptyset. \]

2.1.3.
\[G((3.1, 2.1, 1.3), (3.1, 2.2, 1.2)) = ((2.1, 2.2), (1.2, 1.3)) \]
\[\mathcal{R}_\lambda(3.1, 2.1, 1.3) = \{(1.1), (1.2)\} \]
\[\mathcal{R}_\rho(3.1, 2.1, 1.3) = \{(3.2), (3.3), (2.2), (2.3)\} \]
\[\mathcal{R}_\lambda(3.1, 2.2, 1.2) = \{(1.1), (2.1)\} \]
\[\mathcal{R}_\rho(3.1, 2.2, 1.2) = \{(3.2), (3.3), (2.3), (1.3)\} \]

Grenzräder
\[G((3.1, 2.1, 1.3), (3.1, 2.2, 1.2)) \cap \mathcal{R}_\lambda(3.1, 2.1, 1.3) = (1.2) \]
\[G((3.1, 2.1, 1.3), (3.1, 2.2, 1.2)) \cap \mathcal{R}_\rho(3.1, 2.1, 1.3) = (2.2) \]
\[G((3.1, 2.1, 1.3), (3.1, 2.2, 1.2)) \cap \mathcal{R}_\lambda(3.1, 2.2, 1.2) = (2.1) \]
\[G((3.1, 2.1, 1.3), (3.1, 2.2, 1.2)) \cap \mathcal{R}_\rho(3.1, 2.2, 1.2) = (1.3). \]
2.1.4.
\[G((3.1, 2.2, 1.2), (3.1, 2.2, 1.3)) = (2.2, (1.2, 1.3)) \]
\[\mathcal{R}_\lambda(3.1, 2.2, 1.2) = \{(1.1), (2.1)\} \]
\[\mathcal{R}_\rho(3.1, 2.2, 1.2) = \{(3.2), (3.3), (2.3), (1.3)\} \]
\[\mathcal{R}_\lambda(3.1, 2.2, 1.3) = \{(1.1), (1.2), (2.1)\} \]
\[\mathcal{R}_\rho(3.1, 2.2, 1.3) = \{(3.2), (3.3), (2.3)\} \]
Grenzräume
\[G((3.1, 2.2, 1.2), (3.1, 2.2, 1.3)) \cap \mathcal{R}_\lambda(3.1, 2.2, 1.2) = \emptyset \]
\[G((3.1, 2.2, 1.2), (3.1, 2.2, 1.3)) \cap \mathcal{R}_\rho(3.1, 2.2, 1.2) = (1.3) \]
\[G((3.1, 2.2, 1.2), (3.1, 2.2, 1.3)) \cap \mathcal{R}_\lambda(3.1, 2.2, 1.3) = (1.2) \]
\[G((3.1, 2.2, 1.2), (3.1, 2.2, 1.3)) \cap \mathcal{R}_\rho(3.1, 2.2, 1.3) = \emptyset. \]

2.1.5.
\[G((3.1, 2.2, 1.3), (3.1, 2.3, 1.3)) = ((2.2, 2.3), 1.3) \]
\[\mathcal{R}_\lambda(3.1, 2.2, 1.3) = \{(1.1), (1.2), (2.1)\} \]
\[\mathcal{R}_\rho(3.1, 2.2, 1.3) = \{(3.2), (3.3), (2.3)\} \]
\[\mathcal{R}_\lambda(3.1, 2.3, 1.3) = \{(1.1), (1.2), (2.2), (2.3)\} \]
\[\mathcal{R}_\rho(3.1, 2.3, 1.3) = \{(3.2), (3.3)\} \]
Grenzräume
\[G((3.1, 2.2, 1.3), (3.1, 2.3, 1.3)) \cap \mathcal{R}_\lambda(3.1, 2.2, 1.3) = \emptyset \]
\[G((3.1, 2.2, 1.3), (3.1, 2.3, 1.3)) \cap \mathcal{R}_\rho(3.1, 2.2, 1.3) = (2.3) \]
\[G((3.1, 2.2, 1.3), (3.1, 2.3, 1.3)) \cap \mathcal{R}_\lambda(3.1, 2.3, 1.3) = (2.2, 2.3) \]
\[G((3.1, 2.2, 1.3), (3.1, 2.3, 1.3)) \cap \mathcal{R}_\rho(3.1, 2.3, 1.3) = \emptyset. \]
2.1.6.
\[G((3.1, 2.3, 1.3), (3.2, 2.2, 1.2)) = ((3.1, 3.2), (2.2, 2.3), (1.2, 1.3)) \]
\[\mathcal{R}_\lambda(3.1, 2.3, 1.3) = \{(1.1), (1.2), (2.2), (2.3)\} \]
\[\mathcal{R}_\rho(3.1, 2.3, 1.3) = \{(3.2), (3.3)\} \]
\[\mathcal{R}_\lambda(3.2, 2.2, 1.2) = \{(1.1), (2.1), (3.1)\} \]
\[\mathcal{R}_\rho(3.2, 2.2, 1.2) = \{(3.3), (2.3), (1.3)\} \]

Grenzränder
\[G((3.1, 2.3, 1.3), (3.2, 2.2, 1.2)) \cap \mathcal{R}_\lambda(3.1, 2.3, 1.3) = (2.2, 2.3, 1.2) \]
\[G((3.1, 2.3, 1.3), (3.2, 2.2, 1.2)) \cap \mathcal{R}_\rho(3.1, 2.3, 1.3) = (3.2) \]
\[G((3.1, 2.3, 1.3), (3.2, 2.2, 1.2)) \cap \mathcal{R}_\lambda(3.2, 2.2, 1.2) = (3.1) \]
\[G((3.1, 2.3, 1.3), (3.2, 2.2, 1.2)) \cap \mathcal{R}_\rho(3.2, 2.2, 1.2) = (2.3, 1.3). \]

2.1.7.
\[G((3.2, 2.2, 1.2), (3.2, 2.2, 1.3)) = (1.2, 1.3) \]
\[\mathcal{R}_\lambda(3.2, 2.2, 1.2) = \{(1.1), (2.1), (3.1)\} \]
\[\mathcal{R}_\rho(3.2, 2.2, 1.2) = \{(3.3), (2.3), (1.3)\} \]
\[\mathcal{R}_\lambda(3.2, 2.2, 1.3) = \{(1.1), (1.2), (2.1), (3.1)\} \]
\[\mathcal{R}_\rho(3.2, 2.2, 1.3) = \{(3.3), (2.3)\} \]

Grenzränder
\[G((3.2, 2.2, 1.2), (3.2, 2.2, 1.3)) \cap \mathcal{R}_\lambda(3.2, 2.2, 1.2) = \emptyset \]
\[G((3.2, 2.2, 1.2), (3.2, 2.2, 1.3)) \cap \mathcal{R}_\rho(3.2, 2.2, 1.2) = (1.3) \]
\[G((3.2, 2.2, 1.2), (3.2, 2.2, 1.3)) \cap \mathcal{R}_\lambda(3.2, 2.2, 1.3) = (1.2) \]
\[G((3.2, 2.2, 1.2), (3.2, 2.2, 1.3)) \cap \mathcal{R}_\rho(3.2, 2.2, 1.3) = \emptyset. \]
2.1.8.
\[G((3.2, 2.2, 1.3), (3.2, 2.3, 1.3)) = (2.2, 2.3) \]
\[\mathcal{R}_\lambda(3.2, 2.2, 1.3) = \{(1.1), (1.2), (2.1), (3.1)\} \]
\[\mathcal{R}_\rho(3.2, 2.2, 1.3) = \{(3.3), (2.3)\} \]
\[\mathcal{R}_\lambda(3.2, 2.3, 1.3) = \{(1.1), (1.2), (2.1), (2.2), (3.1)\} \]
\[\mathcal{R}_\rho(3.2, 2.3, 1.3) = (3.3) \]
Grenzränder
\[G((3.2, 2.2, 1.3), (3.2, 2.3, 1.3)) \cap \mathcal{R}_\lambda(3.2, 2.2, 1.3) = \emptyset \]
\[G((3.2, 2.2, 1.3), (3.2, 2.3, 1.3)) \cap \mathcal{R}_\rho(3.2, 2.2, 1.3) = (2.3) \]
\[G((3.2, 2.2, 1.3), (3.2, 2.3, 1.3)) \cap \mathcal{R}_\lambda(3.2, 2.3, 1.3) = (2.2) \]
\[G((3.2, 2.2, 1.3), (3.2, 2.3, 1.3)) \cap \mathcal{R}_\rho(3.2, 2.3, 1.3) = \emptyset. \]

2.1.9.
\[G((3.2, 2.3, 1.3), (3.3, 2.3, 1.3)) = (3.2, 3.3) \]
\[\mathcal{R}_\lambda(3.2, 2.3, 1.3) = \{(1.1), (1.2), (2.1), (2.2), (3.1)\} \]
\[\mathcal{R}_\rho(3.2, 2.3, 1.3) = (3.3) \]
\[\mathcal{R}_\lambda(3.3, 2.3, 1.3) = \{(1.1), (1.2), (2.1), (2.2), (3.1), (3.2)\} \]
\[\mathcal{R}_\rho(3.3, 2.3, 1.3) = \emptyset \]
Grenzränder
\[G((3.2, 2.3, 1.3), (3.3, 2.3, 1.3)) \cap \mathcal{R}_\lambda(3.2, 2.3, 1.3) = \emptyset \]
\[G((3.2, 2.3, 1.3), (3.3, 2.3, 1.3)) \cap \mathcal{R}_\rho(3.2, 2.3, 1.3) = (3.3) \]
\[G((3.2, 2.3, 1.3), (3.3, 2.3, 1.3)) \cap \mathcal{R}_\lambda(3.3, 2.3, 1.3) = (3.2) \]
\[G((3.2, 2.3, 1.3), (3.3, 2.3, 1.3)) \cap \mathcal{R}_\rho(3.3, 2.3, 1.3) = \emptyset. \]
2.2. $\Delta_{ij} = 2$

2.2.1.

$G((3.1, 2.1, 1.1), (3.1, 2.1, 1.3)) = (1.1, 1.3)$

$\mathcal{R}_\lambda(3.1, 2.1, 1.1) = \emptyset$

$\mathcal{R}_\rho(3.1, 2.1, 1.1) = \{(3.2), (3.3), (2.2), (2.3), (1.2), (1.3)\}$

$\mathcal{R}_\lambda(3.1, 2.1, 1.3) = \{(1.1), (1.2)\}$

$\mathcal{R}_\rho(3.1, 2.1, 1.3) = \{(3.2), (3.3), (2.2), (2.3)\}$

Grenzränder

$G((3.1, 2.1, 1.1), (3.1, 2.1, 1.3)) \cap \mathcal{R}_\lambda(3.1, 2.1, 1.1) = \emptyset$

$G((3.1, 2.1, 1.1), (3.1, 2.1, 1.3)) \cap \mathcal{R}_\rho(3.1, 2.1, 1.1) = (1.3)$

$G((3.1, 2.1, 1.1), (3.1, 2.1, 1.3)) \cap \mathcal{R}_\lambda(3.1, 2.1, 1.3) = (1.1)$

$G((3.1, 2.1, 1.1), (3.1, 2.1, 1.3)) \cap \mathcal{R}_\rho(3.1, 2.1, 1.3) = \emptyset.$

2.2.2.

$G((3.1, 2.1, 1.2), (3.1, 2.2, 1.2)) = (2.1, 2.2)$

$\mathcal{R}_\lambda(3.1, 2.1, 1.2) = (1.1)$

$\mathcal{R}_\rho(3.1, 2.1, 1.2) = \{(3.2), (3.3), (2.2), (2.3), (1.3)\}$

$\mathcal{R}_\rho(3.1, 2.2, 1.2) = \{(3.2), (3.3), (2.3), (1.3)\}$

Grenzränder

$G((3.1, 2.1, 1.2), (3.1, 2.2, 1.2)) \cap \mathcal{R}_\lambda(3.1, 2.1, 1.2) = \emptyset$

$G((3.1, 2.1, 1.2), (3.1, 2.2, 1.2)) \cap \mathcal{R}_\rho(3.1, 2.1, 1.2) = (2.2)$

$G((3.1, 2.1, 1.2), (3.1, 2.2, 1.2)) \cap \mathcal{R}_\lambda(3.1, 2.2, 1.2) = (2.1)$

$G((3.1, 2.1, 1.2), (3.1, 2.2, 1.2)) \cap \mathcal{R}_\rho(3.1, 2.2, 1.2) = \emptyset.$
2.2.3.

\[G((3.1, 2.1, 1.3), (3.1, 2.2, 1.3)) = (2.1, 2.2) \]

\[\mathcal{R}_\lambda(3.1, 2.1, 1.3) = \{(1.1), (1.2)\} \]

\[\mathcal{R}_\rho(3.1, 2.1, 1.3) = \{(3.2), (3.3), (2.2), (2.3)\} \]

\[\mathcal{R}_\lambda(3.1, 2.2, 1.3) = \{(1.1), (1.2), (2.1)\} \]

\[\mathcal{R}_\rho(3.1, 2.2, 1.3) = \{(3.2), (3.3), (2.3)\} \]

Grenzränder

\[G((3.1, 2.1, 1.3), (3.1, 2.2, 1.3)) \cap \mathcal{R}_\lambda(3.1, 2.1, 1.3) = \emptyset \]

\[G((3.1, 2.1, 1.3), (3.1, 2.2, 1.3)) \cap \mathcal{R}_\rho(3.1, 2.1, 1.3) = (2.2) \]

\[G((3.1, 2.1, 1.3), (3.1, 2.2, 1.3)) \cap \mathcal{R}_\lambda(3.1, 2.2, 1.3) = (2.1) \]

\[G((3.1, 2.1, 1.3), (3.1, 2.2, 1.3)) \cap \mathcal{R}_\rho(3.1, 2.2, 1.3) = \emptyset. \]

2.2.4.

\[G((3.1, 2.2, 1.2), (3.1, 2.3, 1.3)) = ((2.2, 2.3), (1.2, 1.3)) \]

\[\mathcal{R}_\lambda(3.1, 2.2, 1.2) = \{(1.1), (2.1)\} \]

\[\mathcal{R}_\rho(3.1, 2.2, 1.2) = \{(3.2), (3.3), (2.3), (1.3)\} \]

\[\mathcal{R}_\lambda(3.1, 2.3, 1.3) = \{(1.1), (1.2), (2.2), (2.3)\} \]

\[\mathcal{R}_\rho(3.1, 2.3, 1.3) = \{(3.2), (3.3)\} \]

Grenzränder

\[G((3.1, 2.2, 1.2), (3.1, 2.3, 1.3)) \cap \mathcal{R}_\lambda(3.1, 2.2, 1.2) = \emptyset \]

\[G((3.1, 2.2, 1.2), (3.1, 2.3, 1.3)) \cap \mathcal{R}_\rho(3.1, 2.2, 1.2) = (1.3, 2.3) \]

\[G((3.1, 2.2, 1.2), (3.1, 2.3, 1.3)) \cap \mathcal{R}_\lambda(3.1, 2.3, 1.3) = (1.2, 2.2) \]

\[G((3.1, 2.2, 1.2), (3.1, 2.3, 1.3)) \cap \mathcal{R}_\rho(3.1, 2.3, 1.3) = \emptyset. \]
2.2.5.

\[G((3.1, 2.2, 1.3), (3.2, 2.2, 1.2)) = ((3.1, 3.2), (1.2, 1.3)) \]

\[\mathcal{R}_\lambda(3.1, 2.2, 1.3) = \{(1.1), (1.2), (2.1)\} \]

\[\mathcal{R}_\rho(3.1, 2.2, 1.3) = \{(3.2), (3.3), (2.3)\} \]

\[\mathcal{R}_\lambda(3.2, 2.2, 1.2) = \{(1.1), (2.1), (3.1)\} \]

\[\mathcal{R}_\rho(3.2, 2.2, 1.2) = \{(3.3), (2.3), (1.3)\} \]

Grenzränder

\[G((3.1, 2.2, 1.3), (3.2, 2.2, 1.2)) \cap \mathcal{R}_\lambda(3.1, 2.2, 1.3) = (1.2) \]

\[G((3.1, 2.2, 1.3), (3.2, 2.2, 1.2)) \cap \mathcal{R}_\rho(3.1, 2.2, 1.3) = (3.2) \]

\[G((3.1, 2.2, 1.3), (3.2, 2.2, 1.2)) \cap \mathcal{R}_\lambda(3.2, 2.2, 1.2) = (3.1) \]

\[G((3.1, 2.2, 1.3), (3.2, 2.2, 1.2)) \cap \mathcal{R}_\rho(3.2, 2.2, 1.2) = (1.3) \]

2.2.6.

\[G((3.1, 2.2, 1.3), (3.2, 2.2, 1.3)) = ((3.1, 3.2), (2.2, 2.3)) \]

\[\mathcal{R}_\lambda(3.1, 2.3, 1.3) = \{(1.1), (1.2), (2.2), (2.3)\} \]

\[\mathcal{R}_\rho(3.1, 2.3, 1.3) = \{(3.2), (3.3)\} \]

\[\mathcal{R}_\lambda(3.2, 2.3, 1.3) = \{(1.1), (1.2), (2.1), (3.1)\} \]

\[\mathcal{R}_\rho(3.2, 2.3, 1.3) = \{(3.3), (2.3)\} \]

Grenzränder

\[G((3.1, 2.3, 1.3), (3.2, 2.2, 1.3)) \cap \mathcal{R}_\lambda(3.1, 2.3, 1.3) = (2.2) \]

\[G((3.1, 2.3, 1.3), (3.2, 2.2, 1.3)) \cap \mathcal{R}_\rho(3.1, 2.3, 1.3) = (3.2) \]

\[G((3.1, 2.3, 1.3), (3.2, 2.2, 1.3)) \cap \mathcal{R}_\lambda(3.2, 2.2, 1.3) = (3.1) \]

\[G((3.1, 2.3, 1.3), (3.2, 2.2, 1.3)) \cap \mathcal{R}_\rho(3.2, 2.2, 1.3) = (2.3) \]
2.2.7.

\[G((3.2, 2.2, 1.2), (3.2, 2.3, 1.3)) = ((2.2, 2.3), (1.2, 1.3)) \]

\[\mathcal{R}_\lambda(3.2, 2.2, 1.2) = \{(1.1), (2.1), (3.1)\} \]

\[\mathcal{R}_\rho(3.2, 2.2, 1.2) = \{(3.3), (2.3), (1.3)\} \]

\[\mathcal{R}_\lambda(3.2, 2.3, 1.3) = \{(1.1), (1.2), (2.1), (2.2), (3.1)\} \]

\[\mathcal{R}_\rho(3.2, 2.3, 1.3) = (3.3) \]

Grenzränder

\[G((3.2, 2.2, 1.2), (3.2, 2.3, 1.3)) \cap \mathcal{R}_\lambda(3.2, 2.2, 1.2) = \emptyset \]

\[G((3.2, 2.2, 1.2), (3.2, 2.3, 1.3)) \cap \mathcal{R}_\rho(3.2, 2.2, 1.2) = (2.3, 1.3) \]

\[G((3.2, 2.2, 1.2), (3.2, 2.3, 1.3)) \cap \mathcal{R}_\lambda(3.2, 2.3, 1.3) = (2.2, 1.2) \]

\[G((3.2, 2.2, 1.2), (3.2, 2.3, 1.3)) \cap \mathcal{R}_\rho(3.2, 2.3, 1.3) = \emptyset. \]

2.2.8.

\[G((3.2, 2.2, 1.3), (3.3, 2.3, 1.3)) = ((3.2, 3.3), (2.2, 2.3)) \]

\[\mathcal{R}_\lambda(3.2, 2.2, 1.3) = \{(1.1), (1.2), (2.1), (3.1)\} \]

\[\mathcal{R}_\rho(3.2, 2.2, 1.3) = \{(3.3), (2.3)\} \]

\[\mathcal{R}_\lambda(3.3, 2.3, 1.3) = \{(1.1), (1.2), (2.1), (2.2), (3.1), (3.2)\} \]

Grenzränder

\[G((3.2, 2.2, 1.3), (3.3, 2.3, 1.3)) \cap \mathcal{R}_\lambda(3.2, 2.2, 1.3) = \emptyset \]

\[G((3.2, 2.2, 1.3), (3.3, 2.3, 1.3)) \cap \mathcal{R}_\rho(3.2, 2.2, 1.3) = (2.3, 3.3) \]

\[G((3.2, 2.2, 1.3), (3.3, 2.3, 1.3)) \cap \mathcal{R}_\lambda(3.3, 2.3, 1.3) = (2.2, 3.2) \]

\[G((3.2, 2.2, 1.3), (3.3, 2.3, 1.3)) \cap \mathcal{R}_\rho(3.3, 2.3, 1.3) = \emptyset. \]
2.2.9.

\[G((3.2, 2.3, 1.3), (3.1, 2.1, 1.1)) = ((3.1, 3.2), (2.1, 2.3), (1.1, 1.3)) \]

\[\mathcal{R}_\lambda(3.2, 2.3, 1.3) = \{(1.1), (1.2), (2.1), (2.2), (3.1)\} \]

\[\mathcal{R}_\rho(3.2, 2.3, 1.3) = (3.3) \]

\[\mathcal{R}_\lambda(3.1, 2.1, 1.1) = \emptyset \]

\[\mathcal{R}_\rho(3.1, 2.1, 1.1) = \{(3.2), (3.3), (2.2), (2.3), (1.2), (1.3)\} \]

Grenzräume

\[G((3.2, 2.3, 1.3), (3.1, 2.1, 1.1)) \cap \mathcal{R}_\lambda(3.2, 2.3, 1.3) = (1.1, 2.1, 3.1) \]

\[G((3.2, 2.3, 1.3), (3.1, 2.1, 1.1)) \cap \mathcal{R}_\rho(3.2, 2.3, 1.3) = \emptyset \]

\[G((3.2, 2.3, 1.3), (3.1, 2.1, 1.1)) \cap \mathcal{R}_\lambda(3.1, 2.1, 1.1) = \emptyset \]

\[G((3.2, 2.3, 1.3), (3.1, 2.1, 1.1)) \cap \mathcal{R}_\rho(3.2, 2.3, 1.3) = \emptyset. \]

2.3. \(\Delta_{ij} = 3 \)

2.3.1.

\[G((3.1, 2.1, 1.1), (3.1, 2.2, 1.2)) = ((2.1, 2.2), (1.1, 1.2)) \]

\[\mathcal{R}_\lambda(3.1, 2.1, 1.1) = \emptyset \]

\[\mathcal{R}_\rho(3.1, 2.1, 1.1) = \{(3.2), (3.3), (2.2), (2.3), (1.2), (1.3)\} \]

\[\mathcal{R}_\lambda(3.1, 2.2, 1.2) = \{(1.1), (2.1)\} \]

\[\mathcal{R}_\rho(3.1, 2.2, 1.2) = \{(3.2), (3.3), (2.3), (1.3)\} \]

Grenzräume

\[G((3.1, 2.1, 1.1), (3.1, 2.2, 1.2)) \cap \mathcal{R}_\lambda(3.1, 2.1, 1.1) = \emptyset \]

\[G((3.1, 2.1, 1.1), (3.1, 2.2, 1.2)) \cap \mathcal{R}_\rho(3.1, 2.1, 1.1) = (1.2, 2.2) \]

\[G((3.1, 2.1, 1.1), (3.1, 2.2, 1.2)) \cap \mathcal{R}_\lambda(3.1, 2.2, 1.2) = (1.1, 2.1) \]
\[G((3.1, 2.1, 1.1), (3.1, 2.2, 1.2)) \cap \mathcal{R}_\rho(3.1, 2.2, 1.2) = \emptyset. \]

2.3.2.
\[G((3.1, 2.1, 1.2), (3.1, 2.2, 1.3)) = ((2.1, 2.2), (1.2, 1.3)) \]
\[\mathcal{R}_\lambda(3.1, 2.1, 1.2) = (1.1) \]
\[\mathcal{R}_\rho(3.1, 2.1, 1.2) = \{(3.2), (3.3), (2.2), (2.3), (1.3)\} \]
\[\mathcal{R}_\lambda(3.1, 2.2, 1.3) = \{(1.1), (1.2), (2.1)\} \]
\[\mathcal{R}_\rho(3.1, 2.2, 1.3) = \{(3.2), (3.3), (2.3)\} \]
\[\text{Grenzränder} \]
\[G((3.1, 2.1, 1.2), (3.1, 2.2, 1.3)) \cap \mathcal{R}_\lambda(3.1, 2.1, 1.2) \equiv \emptyset \]
\[G((3.1, 2.1, 1.2), (3.1, 2.2, 1.3)) \cap \mathcal{R}_\rho(3.1, 2.1, 1.2) = (1.3, 2.2) \]
\[G((3.1, 2.1, 1.2), (3.1, 2.2, 1.3)) \cap \mathcal{R}_\lambda(3.1, 2.2, 1.3) = (1.2, 2.1) \]
\[G((3.1, 2.1, 1.2), (3.1, 2.2, 1.3)) \cap \mathcal{R}_\rho(3.1, 2.2, 1.3) = \emptyset. \]

2.3.3.
\[G((3.1, 2.1, 1.3), (3.1, 2.3, 1.3)) = (2.1, 2.3) \]
\[\mathcal{R}_\lambda(3.1, 2.1, 1.3) = \{(1.1), (1.2)\} \]
\[\mathcal{R}_\rho(3.1, 2.1, 1.3) = \{(3.2), (3.3), (2.2), (2.3)\} \]
\[\mathcal{R}_\lambda(3.1, 2.3, 1.3) = \{(1.1), (1.2), (2.2), (2.3)\} \]
\[\mathcal{R}_\rho(3.1, 2.3, 1.3) = \{(3.2), (3.3)\} \]
\[\text{Grenzränder} \]
\[G((3.1, 2.1, 1.3), (3.1, 2.3, 1.3)) \cap \mathcal{R}_\lambda(3.1, 2.1, 1.3) \equiv \emptyset \]
\[G((3.1, 2.1, 1.3), (3.1, 2.3, 1.3)) \cap \mathcal{R}_\rho(3.1, 2.1, 1.3) = (2.3) \]
\[G((3.1, 2.1, 1.3), (3.1, 2.3, 1.3)) \cap \mathcal{R}_\lambda(3.1, 2.3, 1.3) = (2.1) \]
\[G((3.1, 2.1, 1.3), (3.1, 2.3, 1.3)) \cap \mathcal{R}_\rho(3.1, 2.3, 1.3) = \emptyset. \]

2.3.4.
\[G((3.1, 2.2, 1.2), (3.2, 2.2, 1.2)) = (3.1, 3.2) \]
\[\mathcal{R}_\lambda(3.1, 2.2, 1.2) = \{(1.1), (2.1)\} \]
\[\mathcal{R}_\rho(3.1, 2.2, 1.2) = \{(3.2), (3.3), (2.3), (1.3)\} \]
\[\mathcal{R}_\lambda(3.2, 2.2, 1.2) = \{(1.1), (2.1), (3.1)\} \]
\[\mathcal{R}_\rho(3.2, 2.2, 1.2) = \{(3.3), (2.3), (1.3)\} \]

Grenzränder

\[G((3.1, 2.2, 1.2), (3.2, 2.2, 1.2)) \cap \mathcal{R}_\lambda(3.1, 2.2, 1.2) = \emptyset \]
\[G((3.1, 2.2, 1.2), (3.2, 2.2, 1.2)) \cap \mathcal{R}_\rho(3.1, 2.2, 1.2) = (3.2) \]
\[G((3.1, 2.2, 1.2), (3.2, 2.2, 1.2)) \cap \mathcal{R}_\lambda(3.2, 2.2, 1.2) = (3.1) \]
\[G((3.1, 2.2, 1.2), (3.2, 2.2, 1.2)) \cap \mathcal{R}_\rho(3.2, 2.2, 1.2) = \emptyset. \]

2.3.5.
\[G((3.1, 2.2, 1.3), (3.2, 2.2, 1.3)) = (3.1, 3.2) \]
\[\mathcal{R}_\lambda(3.1, 2.2, 1.3) = \{(1.1), (1.2), (2.1)\} \]
\[\mathcal{R}_\rho(3.1, 2.2, 1.3) = \{(3.2), (3.3), (2.3)\} \]
\[\mathcal{R}_\lambda(3.2, 2.2, 1.3) = \{(1.1), (1.2), (2.1), (3.1)\} \]
\[\mathcal{R}_\rho(3.2, 2.2, 1.3) = \{(3.3), (2.3)\} \]

Grenzränder

\[G((3.1, 2.2, 1.3), (3.2, 2.2, 1.3)) \cap \mathcal{R}_\lambda(3.1, 2.2, 1.3) = \emptyset \]
\[G((3.1, 2.2, 1.3), (3.2, 2.2, 1.3)) \cap \mathcal{R}_\rho(3.1, 2.2, 1.3) = (3.2) \]
\[G((3.1, 2.2, 1.3), (3.2, 2.2, 1.3)) \cap \mathcal{R}_\lambda(3.2, 2.2, 1.3) = (3.1) \]
G((3.1, 2.2, 1.3), (3.2, 2.2, 1.3)) \cap \mathcal{R}_\rho(3.2, 2.2, 1.3) = \emptyset.

2.3.6.
G((3.1, 2.3, 1.3), (3.2, 2.3, 1.3)) = (3.1, 3.2)
\mathcal{R}_\lambda(3.1, 2.3, 1.3) = \{(1.1), (1.2), (2.2), (2.3)\}
\mathcal{R}_\rho(3.1, 2.3, 1.3) = \{(3.2), (3.3)\}
\mathcal{R}_\lambda(3.2, 2.3, 1.3) = \{(1.1), (1.2), (2.1), (2.2), (3.1)\}
\mathcal{R}_\rho(3.2, 2.3, 1.3) = (3.3)

Grenzränder
G((3.1, 2.3, 1.3), (3.2, 2.3, 1.3)) \cap \mathcal{R}_\lambda(3.1, 2.3, 1.3) = \emptyset
G((3.1, 2.3, 1.3), (3.2, 2.3, 1.3)) \cap \mathcal{R}_\rho(3.1, 2.3, 1.3) = (3.2)
G((3.1, 2.3, 1.3), (3.2, 2.3, 1.3)) \cap \mathcal{R}_\lambda(3.2, 2.3, 1.3) = (3.1)
G((3.1, 2.3, 1.3), (3.2, 2.3, 1.3)) \cap \mathcal{R}_\rho(3.2, 2.3, 1.3) = \emptyset.

2.3.7.
G((3.2, 2.2, 1.2), (3.3, 2.3, 1.3)) = ((3.2, 3.3), (2.2, 2.3), (1.2, 1.3))
\mathcal{R}_\lambda(3.2, 2.2, 1.2) = \{(1.1), (2.1), (3.1)\}
\mathcal{R}_\rho(3.2, 2.2, 1.2) = \{(3.3), (2.3), (1.3)\}
\mathcal{R}_\lambda(3.3, 2.3, 1.3) = \{(1.1), (1.2), (2.1), (2.2), (3.1), (3.2)\}
\mathcal{R}_\rho(3.3, 2.3, 1.3) = \emptyset

Grenzränder
G((3.2, 2.2, 1.2), (3.3, 2.3, 1.3)) \cap \mathcal{R}_\lambda(3.2, 2.2, 1.2) = \emptyset
G((3.2, 2.2, 1.2), (3.3, 2.3, 1.3)) \cap \mathcal{R}_\rho(3.2, 2.2, 1.2) = (1.3, 2.3, 3.3)
G((3.2, 2.2, 1.2), (3.3, 2.3, 1.3)) \cap \mathcal{R}_\lambda(3.3, 2.3, 1.3) = (1.2, 2.2, 3.2)
\[G((3.2, 2.2, 1.2), (3.3, 2.3, 1.3)) \cap R_\rho(3.3, 2.3, 1.3) = \emptyset. \]

2.3.8.
\[G((3.2, 2.2, 1.3), (3.1, 2.1, 1.1)) = ((3.1, 3.2), (2.1, 2.2), (1.1, 1.3)) \]
\[R_\lambda(3.2, 2.2, 1.3) = \{(1.1), (1.2), (2.1), (3.1)\} \]
\[R_\rho(3.2, 2.2, 1.3) = \{(3.3), (2.3)\} \]
\[R_\lambda(3.1, 2.1, 1.1) = \emptyset \]
\[R_\rho(3.1, 2.1, 1.1) = \{(3.2), (3.3), (2.2), (2.3), (1.2), (1.3)\} \]

Grenzränder
\[G((3.2, 2.2, 1.3), (3.1, 2.1, 1.1)) \cap R_\lambda(3.2, 2.2, 1.3) = (1.1, 2.1, 3.1) \]
\[G((3.2, 2.2, 1.3), (3.1, 2.1, 1.1)) \cap R_\rho(3.2, 2.2, 1.3) = \emptyset \]
\[G((3.2, 2.2, 1.3), (3.1, 2.1, 1.1)) \cap R_\lambda(3.1, 2.1, 1.1) = \emptyset \]
\[G((3.2, 2.2, 1.3), (3.1, 2.1, 1.1)) \cap R_\rho(3.1, 2.1, 1.1) = (1.3, 2.2, 3.2). \]

2.3.9.
\[G((3.2, 2.3, 1.3), (3.1, 2.1, 1.2)) = ((3.1, 3.2), (2.1, 2.3), (1.2, 1.3)) \]
\[R_\lambda(3.2, 2.3, 1.3) = \{(1.1), (1.2), (2.1), (2.2), (3.1)\} \]
\[R_\rho(3.2, 2.3, 1.3) = (3.3) \]
\[R_\lambda(3.1, 2.1, 1.2) = (1.1) \]
\[R_\rho(3.1, 2.1, 1.2) = \{(3.2), (3.3), (2.2), (2.3), (1.3)\} \]

Grenzränder
\[G((3.2, 2.3, 1.3), (3.1, 2.1, 1.2)) \cap R_\lambda(3.2, 2.3, 1.3) = (1.2, 2.1, 3.1) \]
\[G((3.2, 2.3, 1.3), (3.1, 2.1, 1.2)) \cap R_\rho(3.2, 2.3, 1.3) = \emptyset \]
\[G((3.2, 2.3, 1.3), (3.1, 2.1, 1.2)) \cap R_\lambda(3.1, 2.1, 1.2) = \emptyset \]
G((3.2, 2.3, 1.3), (3.1, 2.1, 1.2)) \cap \mathcal{R}_\rho(3.1, 2.1, 1.2) = (1.3, 2.3, 3.2).

Literatur

3.12.2013