Prof. Dr. Alfred Toth

Ontisch-semiotische Relationalzahlen II

1. Wir gehen aus von der Definition des Objektes als 0-stufigem Zeichen (entsprechend der Definition eines Objektes als 0-stelliger Relation, vgl. Bense 1975, S. 65 ff.)

\[ \Omega = Z_0 \]

ezu definieren und bekommen dann im Anschluß an Toth (2015a) die folgende ontisch-semiotische Hierarchie

\[
\begin{align*}
\{{{\Omega}}\}} &= \{Z\} = \{Z\}_2 = Z_3 \\
&\uparrow \\
\{\Omega\} &= \{Z\} = Z_2 \\
&\uparrow \\
\{\Omega\} &= Z_1 \\
&\uparrow \\
\Omega &= Z_0
\end{align*}
\]

2. Damit lassen sich nicht nur semiotische, sondern auch arithmetische Zahlen als Relationalzahlen darstellen, z.B.

\[ 1987 = [1^3 9^2 8^1 7^0], \]

d.h. wir haben folgende Korrespondenzen

\begin{align*}
\text{10er-Potenzen} & \quad \text{ontisch-semiotische Einbettungsstufe} \\
10^0 & \quad 1_0 \\
10^1 & \quad 1_1 \\
10^2 & \quad 1_2 \\
10^3 & \quad 1_3, \text{ usw.}
\end{align*}
Bei Zeichenzahlen, für die sämtliche $3! = 6$ Permutationen gelten, lassen sich diese einheitlich in Relationalzahlschreibweise notieren.

$P(1, 1, 1) = (1_3, 1_2, 1_1)$

$P(1, 1, 2) = (1_3, 1_2, 2_1)$

$P(1, 1, 3) = (1_3, 1_2, 3_1)$

$P(1, 2, 1) = (1_3, 2_2, 1_1)$

$P(1, 2, 2) = (1_3, 2_2, 2_1)$

$P(1, 2, 3) = (1_3, 2_2, 3_1)$

$P(1, 3, 1) = (1_3, 3_2, 1_1)$

$P(1, 3, 2) = (1_3, 3_2, 2_1)$

$P(1, 3, 3) = (1_3, 3_2, 3_1)$

$P(2, 1, 1) = (2_3, 1_2, 1_1)$

$P(2, 1, 2) = (2_3, 1_2, 2_1)$

$P(2, 1, 3) = (2_3, 1_2, 3_1)$

$P(2, 2, 1) = (2_3, 2_2, 1_1)$

$P(2, 2, 2) = (2_3, 2_2, 2_1)$

$P(2, 2, 3) = (2_3, 2_2, 3_1)$

$P(2, 3, 1) = (2_3, 3_2, 1_1)$

$P(2, 3, 2) = (2_3, 3_2, 2_1)$

$P(2, 3, 3) = (2_3, 3_2, 3_1)$

$P(3, 1, 1) = (3_3, 1_2, 1_1)$

$P(3, 1, 2) = (3_3, 1_2, 2_1)$

$P(3, 1, 3) = (3_3, 1_2, 3_1)$
\[ P(3, 2, 1) = (3, 2, 1) \]
\[ P(3, 2, 2) = (3, 2, 2) \]
\[ P(3, 2, 3) = (3, 2, 3) \]
\[ P(3, 3, 1) = (3, 3, 1) \]
\[ P(3, 3, 2) = (3, 3, 2) \]
\[ P(3, 3, 3) = (3, 3, 3). \]

Da Objekte als 0-stufige Zeichen eingeführt sind, ist also die Abbildung der beiden folgenden Systemdefinitionen (vgl. Toth 2015b)

\[ Z^* = \{0\} \subset ((\{0\} \subset \{0, 1\}) \subset (\{0\} \subset \{0, 1\} \subset \{0, 1, 2\})) \supset 0 \]
\[ \Omega^* = (0 \subset (\{0\} \subset ((\{0\} \subset \{0, 1\}) \subset (\{0\} \subset \{0, 1\} \subset \{0, 1, 2\}))) \]
auf Relationalzahlen der Form

\[ R = (x, y, z, w) \]

grundsätzlich linksmehrdeutig.

Literatur


23.4.2015