Prof. Dr. Alfred Toth

Typen der Kardi-Ordinalität und der Ordi-Kardinalität

1. Wie bekannt (vgl. z.B. Toth 2009a, b), korrespondiert die Folge der ontologischen Kategorien der semiotischen Objektrelation

\[\text{OR} = (M, \Omega, J) \]

mit der linearen Folge der Kardinalzahlen

\[1 \rightarrow 2 \rightarrow 3, \]

während die Folge der semiotischen Kategorien der Zeichenrelation

\[\text{ZR} = (M, O, I) \]

mit der „verschachtelten“ Folge der Ordinalzahlen (Bense 1979, S. 63, 67) korrespondiert:

\[(2 \rightarrow 3) \]

\[(1 \rightarrow 2) \]

1

2. Zusätzlich zu den bekanntesten Kombinationen von semiotischen Objekten – den Zeichenobjekten sowie Objektzeichen – kann man 5 weitere Typen von ordi-kardinaler sowie kardi-ordinaler Charakteristik bilden, deren Ordnungsschemata hier aufgezeigt werden:
2.1. \(ZO = \{\{\{m_1, \ldots, m_n\}, \{\Omega_1, \ldots, \Omega_n\}, \{I_1, \ldots, I_n\}\}, \{\mathcal{M}_1, \ldots, \mathcal{M}_n\}, \{\mathcal{O}_1, \ldots, \mathcal{O}_n\}\} \)

\[ZR = ^3R(^1M, ^2O, ^3I) \]

\[DR = ^3R(^1\Omega^\circ, ^2\Omega^\circ, ^3\Omega) \]

\[OR = ^3R(^3M, ^3\Omega, ^3\mathcal{I}) \]
2.2. $\text{OZ} = \{\{\{m, \Omega\beta\}\}, \{\Omega\gamma\}\}, \{\{\mathcal{I}, \mathcal{J}\}\}, \{\Omega_1, \ldots, \Omega_n\}, \{\mathcal{O}_1, \ldots, \mathcal{O}_n\}, \{\mathcal{J}_1, \ldots, \mathcal{J}_n\}, \{I_1, \ldots, I_n\}\}$

$\text{ZR} = 3^R(M, O, I)$

$\text{DR} = 3^R(M, O, I)$

$\text{OR} = 3^R(M, O, I)$
2.3. \(\text{OK} = \{\{\{m_{\alpha}(\cdot), \Omega_{\beta}(\cdot)^{\circ}\}\}, \{\Omega_{\gamma}(\cdot)^{\circ}\}\}, \{\{\Omega_{\delta}(\cdot)^{\circ}\}\}\}, \{\{\Omega_{\epsilon}(\cdot), \Omega_{\zeta}(\cdot)^{\circ}\}\}, \{\{\Omega_{\zeta}(\cdot)^{\circ}\}\}\}, \{m_{1}, ..., m_{n}\}, \{M_{1}^{\circ}, ..., M_{n}^{\circ}\}, \{\Omega_{1}, ..., \Omega_{n}\}, \{O_{1}^{\circ}, ..., O_{n}^{\circ}\}, \{I_{1}^{\circ}, ..., I_{n}^{\circ}\}\}\}

\[
\begin{align*}
1 & \rightarrow 2 \\
2 & \rightarrow 3 \\
Z_R &= {^{3}R}^{(4M, 2O, 3I)} \quad (Z \rightarrow P) \\
\end{align*}
\]

\[
\begin{align*}
1^\circ & \rightarrow 2^\circ \\
2^\circ & \rightarrow 3^\circ \\
\text{DR} &= {^{3}R}^{(4M^\circ, 2O^\circ, 3I^\circ)} \quad (P \rightarrow Z) \\
\end{align*}
\]

\[
\begin{align*}
1 & \rightarrow 2 \rightarrow 3 \\
\text{OR} &= {^{3}R}^{(3M, 3\Omega, 3\mathcal{I})} \quad (Z \rightarrow 2\times 1^\circ) \\
\end{align*}
\]
2.4. \(\text{KO} = \{\{\{m_{(\alpha)}, \Omega_{(\beta)}\}\}, \{\Omega_{(\gamma)}\}, \{\Omega_{(\delta)}\}\},\{\{\iota_{(\epsilon)}, \iota_{(\zeta)}\}\}, \{\iota_{(\eta)}\}\}, \{\{\iota_{(\nu)}, \iota_{(\rho)}, \iota_{(\sigma)}\}\}, \{\iota_{(\tau)}, \iota_{(\upsilon)}\}\}, \{\iota_{(\phi)}, \iota_{(\psi)}\}\}, \{\{O^\circ_1, ..., O^\circ_n\}, \{\Omega^\circ_1, ..., \Omega^\circ_n\}, \{\iota^\circ_1, ..., \iota^\circ_n\}\}\} \)

\[ZR = ^3R^{(1M, 2O, 3I)} \]

\[DR = ^3R^{(1M^\circ, 2O^\circ, 3I^\circ)} \]

\[OR = ^3R^{(3M^\circ, 3\Omega^\circ, 3\iota^\circ)} \]
2.5. \(KZ = \{\{\{<\mathcal{M}_{\alpha}(\cdot)>, \{\Omega_{\beta}(\cdot)\}>\}, \{\Omega_{\gamma}(\cdot)\}\}, \{\{<\mathcal{J}_{\varepsilon}(\cdot)>, \{\mathcal{G}_{\zeta}(\cdot)\}\}\}, \{M^1_1, \ldots, M^n_1\}, \{O^1_1, \ldots, O^n_1\}, \{I^1_1, \ldots, I^n_1\}\} \)

\[ZR = ^3R(^4M, ^2O, ^3I) \]

\[DR = ^3R(^4M^\circ, ^2O^\circ, ^3I^\circ) \]

\[OR = ^3R(^3\mathcal{M}, ^3\Omega, ^3\mathcal{G}) \]
2.6. $ZK = \{\{\{m_{\alpha(\cdot)}\}, \{\Omega_{\beta(\cdot)}\}\}, \{\Omega_{\gamma(\cdot)}\}, \{\Omega_{\delta(\cdot)}\}\},$
$\{\{j_{\epsilon(\cdot)}\}, \{j_{\zeta(\cdot)}\}\}, \{\{M_1, \ldots, M_n\}, \{M^\circ_1, \ldots, M^\circ_n\}\}, \{O_1, \ldots, O_n\}, \{O^\circ_1, \ldots, O^\circ_n\}\}, \{I_1, \ldots, I_n\}, \{I^\circ_1, \ldots, I^\circ_n\}\}

$ZR = ^3R(1^M, 2^O, 3^I)$

$ZR = ^3R(1^M, 2^O, 3^I)$

$DR = ^3R(1^M^\circ, 2^O^\circ, 3^I^\circ)$

$OR = ^3R(1^M, 3^\Omega, 3^j)$

Geht man statt von OR und ZR von weiteren Zeichenrelationen aus (vgl. Toth 2009c), ergeben sich natürlich modifizierte oder ganz neue Resultate.

Bibliographie

Bense, Max, Die Unwahrscheinlichkeit des Ästhetischen. Baden-Baden 1979
Toth, Alfred, Zeichenrelationen mit fehlenden Relata In: Electronic Journal for Mathematical Semiotics (erscheint, 2009c)

26.9.2009